Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the advanced-cron-manager domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /www/wwwroot/www.help4uu.com/wp-includes/functions.php on line 6121
腾讯云存储面向AIGC全面升级,搭载全面自研存储引擎 | 科技云

腾讯云存储面向AIGC全面升级,搭载全面自研存储引擎

云厂商继续为大模型加速落地铺路架桥。

4月8日,腾讯宣布云存储解决方案面向AIGC场景全面升级,能够针对AI大模型数据采集清洗、训练、推理、数据治理全流程提供全面、高效的云存储支持。数据显示,采用腾讯云AIGC云存储解决方案,可将大模型的数据清洗和训练效率均提升一倍,需要的时间缩短一半。

据介绍,腾讯云AIGC云存储解决方案主要由对象存储COS、高性能并行文件存储CFS Turbo、数据加速器GooseFS和数据万象CI等产品组成,是国内首个实现存储引擎全面自研的云存储解决方案。目前,已经有80%的头部大模型企业选择了腾讯云AIGC云存储解决方案,包括百川智能、智谱、元象等明星大模型企业。

此前,腾讯云已经面向AIGC场景推出了基于星脉网络的大模型训练集群HCC、向量数据库、以及行业大模型服务MaaS等大模型全链路云服务。

腾讯集团副总裁、腾讯云与智慧产业事业群COO兼腾讯云总裁邱跃鹏曾经表示,大模型将开创下一代云服务,腾讯云致力于打造“最适合大模型的云”。

解决大模型全链路数据处理难题

AI大模型的研发生产流程,分成数据采集与清洗、模型训练、推理三大环节,各环节都涉及海量的数据处理。

在数据采集与清洗环节,由于原始训练数据规模海量,且来源多样,对存储技术提出了多协议支持、高性能、大带宽的需求。

腾讯云对象存储COS支持单集群管理百 EB 级别存储规模,提供便捷、高效的数据公网接入能力,并支持多种协议,充分支持大模型PB级别的海量数据采集。在数据清洗环节,大数据引擎需要快速地读取并过滤出有效数据,COS通过自研数据加速器GooseFS提升数据访问性能,可实现高达数TBps的读取带宽,支撑计算高速运行,大大提升数据清洗效率。

在模型训练环节,通常需要每2-4小时保存一次训练成果,以便能在GPU故障时时能回滚,因此快速地读写checkpoint(检查点)文件也成了能否高效利用算力资源、提高训练效率的关键。

腾讯云自主研发并行文件存储CFS Turbo ,面向AIGC训练场景的进行了专门优化,每秒总读写吞吐达到TiB/s级别,每秒元数据性能高达百万OPS,均为业界第一。3TB checkpoint 写入时间从10分钟,缩短至10秒内,使大模型训练效率大幅提升。

大模型推理场景对数据安全与可追溯性提出更高要求。腾讯云数据万象CI为此提供图片隐式水印、AIGC内容审核、智能数据检索MetaInsight等能力,为数据生产从“用户输入——预处理——内容审核——版权保护——安全分发——信息检索“业务全流程提供有力支撑,优化AIGC内容生产与管理模式,顺应监管导向,拓宽存储边界。

同时,随着训练数据和推理数据的增长,需要提供低成本的存储能力,减少存储开销。对象存储服务提供了高达 12 个 9 的数据持久性和 99.995% 的数据可用性,能够为业务提供持续可用的存储服务。

业内唯一全自研存储引擎

卓越的性能表现,源自腾讯云自主研发的存储引擎与自研技术。这也是国内目前唯一实现存储引擎全面自研的云存储解决方案。

腾讯云自研的分布式对象存储引擎YottaStore,支持任意多副本及纠删码冗余模式并存,在大幅提升可用性、可靠性及性能的同时大幅降低成本。基于YottaStore,腾讯云对象存储服务COS作为统一的数据存储池,支持单集群1万台服务器,单集群百EB级的存储。

在数据清洗环节中,数据加速器GooseFS可根据数据的使用频率,将数据智能存储至内存、计算集群的本地盘、或可用区的全闪存储集群等不同级别的缓存中,低成本缩短IO路径,提升数据访问性能。相比起从对象存储COS中直接读取,GooseFS可以提供亚毫秒级的数据访问延迟、百万级的IOPS和Tbps级别的吞吐能力,有效提升数据清洗效率。

面向模型训练场景的CFS Turbo,则是目前业内唯一自研的并行文件存储系统。

基于自研分布式高性能存储引擎Histor,CFS Turbo底层通过自研用户态协议栈和RDMA等技术,减少数据的多次拷贝与虚拟化消耗,大幅降低了存储时延、提升吞吐性能;在应用侧,CFS Turbo自研并行文件传输协议,实现了多链路并行访问,大大提升了吞吐效率。原来的文件存储受限于传统NFS协议,单客户端只能单链路访问,也导致吞吐存在性能瓶颈。

此外,针对AIGC的checkpoint记录、大视频文件读写、小图片读写等场景,腾讯云CFS Turbo还自研了分级缓存、自适应条带化、分布式元数据的技术,大幅提升了AIGC场景下的读写性能。除了大模型企业以外,CFS Turbo也被广泛应用于自动驾驶与工业仿真场景,包括博世汽车蔚来等自动驾驶厂商,上海电气、深势等仿真场景,墨镜天合、追光等影视特效场景。

今年1月,在沙利文联合头豹研究院发布的《2023年中国云存储解决方案市场报告》中,腾讯云存储入选“领导者”阵营,位列第一。随着AIGC时代来临,腾讯云也在不断迭代优化自身产品,服务最新场景需求,帮助企业把握时代红利。

文章来源于互联,不代表科技云立场!如有侵权,请联系我们。

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注